Generalizing continuations

Semantics II

April 30 & May 3, 2018

1

A type constructor *F* is applicative if it supports ρ and \circledast with these types...

$$\rho: a \to Fa$$
 $\circledast: F(a \to b) \to Fa \to Fb$

... Where ρ is a trivial way to inject something into the richer type characterized by *F*, and \odot is function application lifted into *F*.

Some concrete applicatives

For $Ga ::= q \rightarrow a$, we have an Applicative for assignment-dependence:

$$\underbrace{\rho x := \lambda g. x}_{\text{cf. [John]} := \lambda g. j} \qquad \underbrace{m \otimes n := \lambda g. mg(ng)}_{\text{cf. [}\alpha \beta] := \lambda g. [\alpha]g([\beta]g)}$$

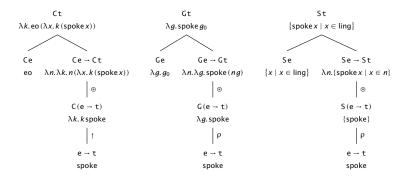
For S $a := a \rightarrow \{0, 1\}$, we have an Applicative for alternatives:

$$\underbrace{\rho x := \{x\}}_{\text{cf. [John] := }\{j\}} \underbrace{m \otimes n := \{f x \mid f \in m, x \in n\}}_{\text{cf. }[\alpha \beta] := \{f x \mid f \in [\alpha], x \in [\beta]\}}$$

For $Ca := (a \rightarrow t) \rightarrow t$, we have an Applicative for scope/continuations:

no correspondent in standard theories no correspondent in standard theories

Sample derivations: everyone spoke (cf. she₀ spoke, a linguist spoke)



Across all these cases, we observe a common pattern: ρ and \odot allow us to "pretend" as if we weren't dealing with fancy things, for the purposes of composing the basic function-argument structure of the sentence.

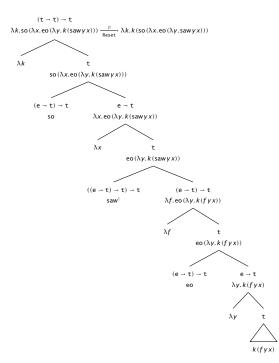
When I have, e.g., a function $f : a \to b$ and a fancy argument m : Fa, ρ and \otimes allow me to "apply f inside the F" to deliver an Fb.

This suggests that we need a way to end derivations, and that derivations must be obligatorily concluded at certain points (e.g., at tensed clauses).

 $m^{\downarrow} = m(\lambda p.p)$

An example of what this delivers for the present example:

$$(\lambda k. \neg \exists x. k (\operatorname{came} x)) (\lambda p. p) = \neg \exists x. \operatorname{came} x$$



Towers

The tower notation

Continuized derivations are easier to appreciate if we help outselves to an ingenious bit of notation known as **towers** (Barker & Shan 2008):

$$\lambda k.f[kx] \longrightarrow \frac{f[]}{x}$$

A few examples of how this works:

$$\lambda k. km \rightarrow \frac{[]}{m}$$
 $\lambda k. ksaw \rightarrow \frac{[]}{saw}$ $\lambda k. \forall y. ky \rightarrow \frac{\forall y. []}{y}$

Combining towers with \circledast

$$\frac{A[]}{f} \circledast \frac{B[]}{x} \longrightarrow \frac{A[B[]]}{fx}$$

Notice that we give the function priority over the argument:

$$\left(\frac{[]}{\mathsf{saw}}\frac{\forall y.[]}{y}\right)\frac{\exists x.[]}{x} \to \frac{\forall y.\exists x.[]}{\mathsf{saw}\, y\, x}$$

The result's equivalent to what we'd derive using a linear notation:

 $\lambda k. \forall y. \exists x. k (saw y x)$

Evaluation order

Shan & Barker (2006) make an interesting, and important suggestion. Instead of always giving *functions* priority. Why not always give *the thing on the left* priority?

A[]	B[]	A[B[]]
x	y	 xy or yx, whichever's defined
لے۔ I-exp	r-exp	

The "effects" on the top levels are consistently threaded in their *linear* order, regardless of whether we're doing forward or backward application on the bottom.

Shan & Barker refer to this as "left-to-right evaluation". It corresponds to a hypothesis that semantic evaluation has a built-in linear bias.

Somebody saw everybody

Now we can re-present the derivation of somebody saw everybody:

$$\frac{\exists x.[]}{x} \left(\frac{[]}{\mathsf{saw}} \frac{\forall y.[]}{y} \right) \rightarrow \frac{\exists x.\forall y.[]}{\mathsf{saw} yx}$$

This time, we derive *surface scope*. We are no longer giving exclusive priority to the function, but to things on the left.

This seems like a better situation than the one we were in before — we bias surface-scope interpretations, just like speakers/hearers do. And the *explanation* for this bias is intuitive: people evaluate expressions in the order they are heard.

Varieties of ↑

Because † can apply to anything, it can also apply to towers:

$$\frac{\forall \gamma.[]}{\gamma} \rightarrow \frac{[]}{\forall \gamma.[]}{\forall \gamma.[]}$$

Less obviously, but no less validly, we are also free to apply 1 inside a tower:

$$\frac{[]}{\uparrow} \frac{\forall y.[]}{y} \rightarrow \frac{\forall y.[]}{y^{\uparrow}} \rightarrow \frac{\forall y.[]}{y}$$

Big tower combination: composing C with C

A[]	B[]		A[B[]]
C []	D []	\rightarrow	C[D[]]
f	x		fx

In fact, this rule follows directly from applying
 inside the function tower:

$$\begin{pmatrix} \boxed{1} & \underline{A[1]} \\ \odot & \underline{C[1]} \\ \odot & \underline{f} \end{pmatrix} \frac{\underline{B[1]}}{\underline{D[1]}} = \frac{\underline{A[B[1]]}}{\underline{C[D[1]]}}$$

In terms of linear notation, three-level tower combination is quite a beast:

$$M \circledast N = \lambda k. M (\lambda m. N (\lambda n. k (m \circledast n)))$$

instead of combining m and n by application, combine them by \odot

And that is all we need to account for inverse scope!

Lowering

The last piece is re-casting lowering (\downarrow) in terms of towers. Like both \uparrow and \odot , it works automatically for towers of arbitary heights.

$$\frac{f[]}{x} \to f[x] \qquad \qquad \frac{f[]}{g[]} \to \frac{f[]}{g[x]} \to f[g[x]]$$

Lowering our inverse-scope derivation:

$$\frac{\forall y.[]}{\exists x.[]} \rightarrow \forall y.\exists x.saw y x$$

$$saw y x$$

Binding

Pronouns

Recall that Jacobson (1999) treats pronouns as *identity functions* on individuals. Barker & Shan (2014) treat pronouns as identity functions on *continuations*.

 $[she] = \underbrace{\lambda k. k}_{(e \to t) \to e \to t}$

This expression is equivalent in the lambda calculus to the following:

 $\lambda k.\lambda x.kx$

Applying the tower notation, we end up with the following:

λ*x*.[]

х

Basic derivations: John saw her, everybody saw her

$$\frac{[]}{j}\left(\frac{[]}{\operatorname{saw}}\frac{\lambda y.[]}{y}\right) \longrightarrow \frac{\lambda y.[]}{\operatorname{saw} yj} \longrightarrow \lambda y.\operatorname{saw} yj$$

Binding and crossover

Anybody needs an operation that allows pronouns to be bound. In standard accounts, this is Predicate Abstraction. In Jacobson's semantics, it's the **Z** rule. Here, the relevant operation *duplicates* an expression's value above the line:

[]	[]m	∀x.[]	$\forall x.[]x$
	\rightarrow —	\longrightarrow	
m	m	Х	х

What this actually amounts to denotationally is the following:

 $m^{\triangleright} = \lambda k. m(\lambda x. kxx)$

Notice that without the extra *x*, this would just be an identity mapping:

 $\lambda k.m(\lambda x.kx) = \lambda k.mk = m$

Sample derivation: everybody saw his mom

$$\frac{\forall x.[]x}{x} \left(\frac{[]}{\mathsf{saw}} \left(\frac{[]}{\mathsf{mom}} \frac{\lambda y.[]}{y} \right) \right) \rightarrow \frac{\forall x.(\lambda y.[])x}{\mathsf{saw}(\mathsf{mom}y)x} \rightarrow \frac{\forall x.[]}{\mathsf{saw}(\mathsf{mom}x)x}$$

The L-R bias pipes the quantifier's "extra argument" to the pronoun. Lowering:

 $\forall x. saw (mom x) x$

All without any assignment functions!

Do pronouns have type $Ca := (a \rightarrow t) \rightarrow t$ (for some *a*)?

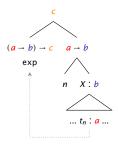
Do pronouns have type $Ca := (a \rightarrow t) \rightarrow t$ (for some *a*)?

They do not! One concrete type for a pronoun is $(e \rightarrow t) \rightarrow e \rightarrow t$, which is not of the form $(a \rightarrow t) \rightarrow t$. More generally, we can assign pronouns the following type:

 $(e \rightarrow a) \rightarrow e \rightarrow a$

Generalized types

The most general type for something that takes scope is $(a \rightarrow b) \rightarrow c$:



Here, exp functions "locally" as something of type a, and takes scope over something of type b, ultimately delivering something of type c:

- Quantifiers: locally e, scope over t, deliver t
- Pronouns: locally e, scope over a, deliver $e \rightarrow a$

Towers for types

Just like there's a useful tower notation for continuized (scope-y) values, there's a tower notation for continuized (scope-y) types:

$$\frac{c \mid b}{a} ::= (a \to b) \to c$$

Here are examples of tower-types for a generalized quantifier, a pronoun, and a >-shifted generalized quantifier:

$$\frac{\mathbf{t} \left| \mathbf{t} \right|}{\mathbf{e}} \qquad \frac{\mathbf{e} \rightarrow a \left| a \right|}{\mathbf{e}} \qquad \frac{\mathbf{t} \left| \mathbf{e} \rightarrow \mathbf{t} \right|}{\mathbf{e}}$$

Combination with generalized types

Generalizing the types does not change the basic story about how composition works. Composition is still via ρ and \odot , but we are no longer artifically restricting ourselves to scoping over and returning something of type t, as we have done.

For example, the action of ρ can be seen in terms of tower types as:

And the action of \circledast can likewise be seen in terms of tower types as:

Left expects to scope over a *d*, and so right must return a *d*.

Basic derivation: he saw her

Here is a derivation of *he saw her* in terms of value-towers:

$$\frac{\lambda x.[]}{x} \left(\frac{[]}{\mathsf{saw}} \frac{\lambda y.[]}{y} \right) \longrightarrow \frac{\lambda x.\lambda y.[]}{\mathsf{saw} yx} \longrightarrow \lambda x.\lambda y.\mathsf{saw} yx$$

Sketching the type-towers in the derivation is revealing, as well:

$$\frac{e \to e \to t \left| e \to t \right|}{e} \left(\frac{e \to t \left| e \to t \right|}{e \to e \to t} \frac{e \to t \left| t \right|}{e} \right) \to \frac{e \to e \to t \left| t \right|}{t} \to e \to e \to t$$

This reveals something important about $\downarrow \dots$

Basic derivation: he saw her

Here is a derivation of *he saw her* in terms of value-towers:

$$\frac{\lambda x.[]}{x} \left(\frac{[]}{\mathsf{saw}} \frac{\lambda y.[]}{y} \right) \longrightarrow \frac{\lambda x.\lambda y.[]}{\mathsf{saw} yx} \longrightarrow \lambda x.\lambda y.\mathsf{saw} yx$$

Sketching the type-towers in the derivation is revealing, as well:

$$\frac{e \to e \to t \left| e \to t \right|}{e} \left(\frac{e \to t \left| e \to t \right|}{e \to e \to t} \frac{e \to t \left| t \right|}{e} \right) \to \frac{e \to e \to t \left| t \right|}{t} \to e \to e \to t$$

This reveals something important about *i...* it requires matching types!

$$\frac{b \mid a}{a} \to b$$

Binding with types: every boy, likes his, mom

$$\frac{t \mid e \to t}{e} \left(\frac{e \to t \mid e \to t}{e \to e \to t} \left(\frac{e \to t \mid e \to t}{e \to e} \frac{e \to t \mid t}{e} \right) \right) \to \frac{t \mid t}{t}$$

The out-to-bind quantifier and the out-to-be-bound pronoun exercise a magnetic pull on each other, one which linear-biased \odot brings to fruition.

Crossover

Quantifiers cannot bind pronouns that precede them, even though the quantifier can scope over another quantifier in that position:

- 1. A doctor examined every patient.
- 2. *His_i mother examined every patient_i.
- 3. *He_i examined every patient_i.
- 4. *A friend of his_i examined every patient_i.

How is crossover normally enforced?

Crossover

Quantifiers cannot bind pronouns that precede them, even though the quantifier can scope over another quantifier in that position:

- 1. A doctor examined every patient.
- 2. *His_i mother examined every patient_i.
- 3. *He_i examined every patient_i.
- 4. *A friend of his_i examined every patient_i.

How is crossover normally enforced? There are a number of approaches, but one way or another, they prevent a quantifier from binding a pronoun by moving over it.

However, this is problematic. Other examples suggest that the right account of crossover is not in terms of *hierarchy* but rather in terms of *linear order*.

Crossover

Quantifiers cannot bind pronouns that precede them, even though the quantifier can scope over another quantifier in that position:

- 1. A doctor examined every patient.
- 2. *His_i mother examined every patient_i.
- 3. *He_i examined every patient_i.
- 4. *A friend of his, examined every patient,.

How is crossover normally enforced? There are a number of approaches, but one way or another, they prevent a quantifier from binding a pronoun by moving over it.

However, this is problematic. Other examples suggest that the right account of crossover is not in terms of *hierarchy* but rather in terms of *linear order*.

5. [Someone from every city_i] likes it_i.

Explaining crossover: trying surface scope

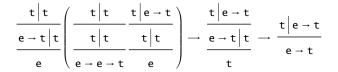
Let's try and construct a surface-scope derivation for he_i examined every patient_i.

$$\frac{\mathbf{e} \to \mathbf{t} \, \Big| \, \mathbf{t}}{\mathbf{e}} \left(\frac{\mathbf{t} \, \Big| \, \mathbf{t}}{\mathbf{e} \to \mathbf{e} \to \mathbf{t}} \frac{\mathbf{t} \, \Big| \, \mathbf{e} \to \mathbf{t}}{\mathbf{e}} \right) \longrightarrow \frac{\mathbf{e} \to \mathbf{t} \, \Big| \, \mathbf{e} \to \mathbf{t}}{\mathbf{t}}$$

There is no way to conclude the derivation. Barker & Shan (2008) put it well:

At best, the pronoun mournfully looks left for an antecedent, while the binder looks right for a pronoun to bind.

Explaining crossover: trying inverse scope



Can we conclude this derivation? If we stick to our old version of \downarrow , we could since the bottom and top-right types match. But we can *place a restriction on* \downarrow :

Explaining crossover: trying inverse scope

$$\frac{\frac{t\left|t\right|}{e \to t\left|t\right|}}{e} \left(\frac{\frac{t\left|t\right|}{t\left|t\right|}}{\frac{t\left|t\right|}{e \to e \to t}} \frac{t\left|e \to t\right|}{e}\right) \to \frac{\frac{t\left|e \to t\right|}{e \to t\left|t\right|}}{t} \to \frac{t\left|e \to t\right|}{e \to t}$$

Can we conclude this derivation? If we stick to our old version of \downarrow , we could since the bottom and top-right types match. But we can *place a restriction on* \downarrow :

$$\frac{a \, \Big| \, \mathsf{t}}{\mathsf{t}} \to a$$

In other words, you're only allowed to "end" derivations of sentences.

Stepping back

The prohibition on crossover comes from two places: the inherent L-R bias in composition, and a stipulation to the effect that only complete sentences can be \downarrow 'd.

Taken together, these require a bound pronoun to follow its binder. There seem to be some counterexamples:

- 6. Himself_i, every man_i loves _.
- 7. Which of his; relatives does every man; love _ the most?
- 8. Unless he_i's been an officer, no man_i can be a gentleman $_$.

Moral: the right notion is *reconstructed* linear order. Shan & Barker (2006), Barker & Shan (2014) give a full fragment treating reconstruction.

Islands

There is a slight hiccup. If pronouns take scope, and things need to be lowered at islands, how can pronouns scope out of islands?

9. Every philosopher_i thinks [they_i're a genius].

For the [tensed clause] (a scope island), we derive λx . genius x. We need to convert this back to a tower so it can interact with the \triangleright -shifted subject in the desired way.

Moreover, whatever solution we give should be general enough to handle cases like:

10. Every boy_i told every girl_j that [he_i was paired with her_j].

By and large, these issues have not been dealt with by continuations-istas. There is one exception (Charlow 2014).

- Barker, Chris & Chung-chieh Shan. 2008. Donkey anaphora is in-scope binding. *Semantics and Pragmatics* 1(1). 1–46. https://doi.org/10.3765/sp.1.1.
- Barker, Chris & Chung-chieh Shan. 2014. Continuations and natural language. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199575015.001.0001.
- Charlow, Simon. 2014. On the semantics of exceptional scope. New York University Ph.D. thesis. http://semanticsarchive.net/Archive/2JmMWRjY/.
- Charlow, Simon. 2017. A modular theory of pronouns and binding. In Proceedings of Logic and Engineering of Natural Language Semantics 14.
- Jacobson, Pauline. 1999. Towards a variable-free semantics. *Linguistics and Philosophy* 22(2). 117-184. https://doi.org/10.1023/A:1005464228727.
- Kiselyov, Oleg. 2015. Applicative abstract categorial grammars. In Makoto Kanazawa, Lawrence S. Moss & Valeria de Paiva (eds.), NLCS'15. Third workshop on natural language and computer science, vol. 32 (EPIC Series), 29–38.
- McBride, Conor & Ross Paterson. 2008. Applicative programming with effects. Journal of Functional Programming 18(1), 1–13. https://doi.org/10.1017/S0956796807006326.
- Shan, Chung-chieh & Chris Barker. 2006. Explaining crossover and superiority as left-to-right evaluation. Linguistics and Philosophy 29(1). 91-134. https://doi.org/10.1007/s10988-005-6580-7.