
Generalizing continuations

Semantics II

April 30 & May 3, 2018

1

Applicatives (McBride & Paterson 2008, Kiselyov 2015, Charlow 2017)

A type constructor F is applicative if it supports ρ and ç with these types. . .

ρ : a → F a ç : F (a → b)→ F a → F b

. . . Where ρ is a trivial way to inject something into the richer type characterized by

F , and ç is function application lifted into F .

2

Some concrete applicatives

For Ga ::= g→ a, we have an Applicative for assignment-dependence:

ρx := λg.x︸ ︷︷ ︸
cf. �John� := λg. j

mç n := λg.mg(ng)︸ ︷︷ ︸
cf. �α β� := λg.�α�g(�β�g)

For Sa ::= a → {0,1}, we have an Applicative for alternatives:

ρx := {x}︸ ︷︷ ︸
cf. �John� := { j

}
mç n := {f x | f ∈ m, x ∈ n

}
︸ ︷︷ ︸

cf. �α β� := {f x | f ∈ �α�, x ∈ �β�}

For Ca ::= (a → t)→ t, we have an Applicative for scope/continuations:

ρx := λk.kx︸ ︷︷ ︸
no correspondent in standard theories

mç n := λk.m(λf .n(λx.k (f x)))︸ ︷︷ ︸
no correspondent in standard theories

3

Sample derivations: everyone spoke (cf. she0 spoke, a linguist spoke)

Ct

λk.eo(λx.k (spokex))

Ce

eo

Ce→ Ct

λn.λk.n(λx.k (spokex))

C(e→ t)

λk.kspoke

e→ t

spoke

ç

↑

Gt

λg.spokeg0

Ge

λg.g0

Ge→ Gt

λn.λg.spoke(ng)

G(e→ t)

λg.spoke

e→ t

spoke

ç

ρ

St
{
spokex | x ∈ ling

}

Se
{
x | x ∈ ling

}
Se→ St

λn.{spokex | x ∈ n}

S(e→ t)

{spoke}

e→ t

spoke

ç

ρ

4

The ç intuition

Across all these cases, we observe a common pattern: ρ and ç allow us to “pretend”

as if we weren’t dealing with fancy things, for the purposes of composing the basic

function-argument structure of the sentence.

When I have, e.g., a function f : a → b and a fancy argument m : F a, ρ and ç allow

me to “apply f inside the F” to deliver an F b.

5

Ending derivations and Reset

This suggests that we need a way to end derivations, and that derivations must be

obligatorily concluded at certain points (e.g., at tensed clauses).

m↓ = m(λp.p)

An example of what this delivers for the present example:

(λk.¬∃x.k (camex))(λp.p) = ¬∃x.camex

6

(t→ t)→ t

λk.so(λx.eo(λy .k (sawy x))) ↓↑
--→
Reset

λk.k (so(λx.eo(λy .sawy x)))

λk t

so(λx.eo(λy .k (sawy x)))

(e→ t)→ t

so

e→ t

λx.eo(λy .k (sawy x))

λx t

eo(λy .k (sawy x))

((e→ t)→ t)→ t

saw↑
(e→ t)→ t

λf .eo(λy .k (f y x))

λf t

eo(λy .k (f y x))

(e→ t)→ t

eo

e→ t

λy .k (f y x)

λy t

k (f y x)
7

Towers

8

The tower notation

Continuized derivations are easier to appreciate if we help outselves to an

ingenious bit of notation known as towers (Barker & Shan 2008):

λk.f [kx] -→
f []

x

A few examples of how this works:

λk.km -→
[]

m
λk.ksaw -→

[]

saw
λk.∀y .ky -→

∀y .[]

y

9

Combining towers with ç

Likewise, ç can be naturally re-expressed in the tower notation:

A[]

f
ç

B []

x
-→

A[B []]

f x

Notice that we give the function priority over the argument:

[]

saw

∀y .[]

y

∃x.[]

x
-→

∀y .∃x.[]

sawy x

The result’s equivalent to what we’d derive using a linear notation:

λk.∀y .∃x.k (sawy x)

10

Evaluation order

Shan & Barker (2006) make an interesting, and important suggestion. Instead of

always giving functions priority. Why not always give the thing on the left priority?

A[]

x
︸ ︷︷ ︸
l-exp

B []

y
︸ ︷︷ ︸
r-exp

-→
A[B []]

x y or y x, whichever’s defined

The “effects” on the top levels are consistently threaded in their linear order,

regardless of whether we’re doing forward or backward application on the bottom.

Shan & Barker refer to this as “left-to-right evaluation”. It corresponds to a

hypothesis that semantic evaluation has a built-in linear bias.

11

Somebody saw everybody

Now we can re-present the derivation of somebody saw everybody:

∃x.[]

x

[]

saw

∀y .[]

y

 -→

∃x.∀y .[]

sawy x

This time, we derive surface scope. We are no longer giving exclusive priority to the

function, but to things on the left.

This seems like a better situation than the one we were in before — we bias

surface-scope interpretations, just like speakers/hearers do. And the explanation

for this bias is intuitive: people evaluate expressions in the order they are heard.

12

Varieties of ↑

Because ↑ can apply to anything, it can also apply to towers:

x
∀y .[]

y
-→

[]

∀y .[]

y

Less obviously, but no less validly, we are also free to apply ↑ inside a tower:

[]

↑

∀y .[]

y
-→

∀y .[]

y↑
-→

∀y .[]

[]

y

13

Big tower combination: composing C with C

A[]

C []

f

B []

D []

x

-→

A[B []]

C [D []]

f x

In fact, this rule follows directly from applying ç inside the function tower:

[]

ç

A[]

C []

f

B []

D []

x

=

A[B []]

C [D []]

f x

In terms of linear notation, three-level tower combination is quite a beast:

M ççN = λk.M (λm.N (λn.k (mç n︸ ︷︷ ︸
instead of combining m and n by application, combine them by ç

)))

14

Inverse scope

And that is all we need to account for inverse scope!

[]

∃x.[]

x

[]

[]

saw

∀y .[]

[]

y

-→

∀y .[]

∃x.[]

sawy x

15

Lowering

The last piece is re-casting lowering (↓) in terms of towers. Like both ↑ and ç, it

works automatically for towers of arbitary heights.

f []

x
-→ f [x]

f []

g[]

x

-→
f []

g[x]
-→ f [g[x]]

Lowering our inverse-scope derivation:

∀y .[]

∃x.[]

sawy x

-→ ∀y .∃x.sawy x

16

Binding

17

Pronouns

Recall that Jacobson (1999) treats pronouns as identity functions on individuals.

Barker & Shan (2014) treat pronouns as identity functions on continuations.

�she� = λk.k︸ ︷︷ ︸
(e→t)→e→t

This expression is equivalent in the lambda calculus to the following:

λk.λx.kx

Applying the tower notation, we end up with the following:

λx.[]

x

18

Basic derivations: John saw her, everybody saw her

[]

j

[]

saw

λy .[]

y

 -→

λy .[]

sawy j
-→ λy .sawy j

[]

∀x.[]

x

[]

[]

saw

λy .[]

[]

y

-→

λy .[]

∀x.[]

sawy x

-→ λy .∀x.sawy x

19

Binding and crossover

Anybody needs an operation that allows pronouns to be bound. In standard

accounts, this is Predicate Abstraction. In Jacobson’s semantics, it’s the Z rule.

Here, the relevant operation duplicates an expression’s value above the line:

[]

m
-→

[]m

m

∀x.[]

x
-→

∀x.[]x

x

What this actually amounts to denotationally is the following:

m. = λk.m(λx.kx x)

Notice that without the extra x, this would just be an identity mapping:

λk.m(λx.kx) = λk.mk = m

20

Sample derivation: everybody saw his mom

∀x.[]x

x

[]

saw

[]

mom

λy .[]

y

 -→

∀x.(λy .[])x

saw(momy)x
-→

∀x.[]

saw(momx)x

The L-R bias pipes the quantifier’s “extra argument” to the pronoun. Lowering:

∀x.saw(momx)x

All without any assignment functions!

21

Types for pronouns

Do pronouns have type Ca ::= (a → t)→ t (for some a)?

They do not! One concrete type for a pronoun is (e→ t)→ e→ t, which is not of

the form (a → t)→ t. More generally, we can assign pronouns the following type:

(e→ a)→ e→ a

22

Types for pronouns

Do pronouns have type Ca ::= (a → t)→ t (for some a)?

They do not! One concrete type for a pronoun is (e→ t)→ e→ t, which is not of

the form (a → t)→ t. More generally, we can assign pronouns the following type:

(e→ a)→ e→ a

22

Generalized types

The most general type for something that takes scope is (a → b)→ c:

c

(a → b)→ c

exp

a → b

n X : b

... tn : a ...

Here, exp functions “locally” as something of type a, and takes scope over

something of type b, ultimately delivering something of type c:

ñ Quantifiers: locally e, scope over t, deliver t

ñ Pronouns: locally e, scope over a, deliver e→ a

23

Towers for types

Just like there’s a useful tower notation for continuized (scope-y) values, there’s a

tower notation for continuized (scope-y) types:

c b

a
::= (a → b)→ c

Here are examples of tower-types for a generalized quantifier, a pronoun, and a

.-shifted generalized quantifier:

t t

e

e→ a a

e

t e→ t

e

24

Combination with generalized types

Generalizing the types does not change the basic story about how composition

works. Composition is still via ρ and ç, but we are no longer artifically restricting

ourselves to scoping over and returning something of type t, as we have done.

For example, the action of ρ can be seen in terms of tower types as:

a -→
b b

a

And the action of ç can likewise be seen in terms of tower types as:

c d

a → b

d e

a
-→

c e

b

Left expects to scope over a d, and so right must return a d.

25

Basic derivation: he saw her

Here is a derivation of he saw her in terms of value-towers:

λx.[]

x

[]

saw

λy .[]

y

 -→

λx.λy .[]

sawy x
-→ λx.λy .sawy x

Sketching the type-towers in the derivation is revealing, as well:

e→ e→ t e→ t

e

e→ t e→ t

e→ e→ t

e→ t t

e

 -→

e→ e→ t t

t
-→ e→ e→ t

This reveals something important about ↓. . .

it requires matching types!

b a

a
-→ b

26

Basic derivation: he saw her

Here is a derivation of he saw her in terms of value-towers:

λx.[]

x

[]

saw

λy .[]

y

 -→

λx.λy .[]

sawy x
-→ λx.λy .sawy x

Sketching the type-towers in the derivation is revealing, as well:

e→ e→ t e→ t

e

e→ t e→ t

e→ e→ t

e→ t t

e

 -→

e→ e→ t t

t
-→ e→ e→ t

This reveals something important about ↓. . . it requires matching types!

b a

a
-→ b

26

Binding with types: every boyi likes hisi mom

t e→ t

e

e→ t e→ t

e→ e→ t

e→ t e→ t

e→ e

e→ t t

e

 -→

t t

t

The out-to-bind quantifier and the out-to-be-bound pronoun exercise a magnetic

pull on each other, one which linear-biased ç brings to fruition.

27

Crossover

Quantifiers cannot bind pronouns that precede them, even though the quantifier

can scope over another quantifier in that position:

1. *A doctor examined every patient.

2. *Hisi mother examined every patienti .

3. *Hei examined every patienti .

4. *A friend of hisi examined every patienti .

How is crossover normally enforced?

There are a number of approaches, but one

way or another, they prevent a quantifier from binding a pronoun by moving over it.

However, this is problematic. Other examples suggest that the right account of

crossover is not in terms of hierarchy but rather in terms of linear order.

5. [Someone from every cityi] likes iti .

28

Crossover

Quantifiers cannot bind pronouns that precede them, even though the quantifier

can scope over another quantifier in that position:

1. *A doctor examined every patient.

2. *Hisi mother examined every patienti .

3. *Hei examined every patienti .

4. *A friend of hisi examined every patienti .

How is crossover normally enforced? There are a number of approaches, but one

way or another, they prevent a quantifier from binding a pronoun by moving over it.

However, this is problematic. Other examples suggest that the right account of

crossover is not in terms of hierarchy but rather in terms of linear order.

5. [Someone from every cityi] likes iti .

28

Crossover

Quantifiers cannot bind pronouns that precede them, even though the quantifier

can scope over another quantifier in that position:

1. *A doctor examined every patient.

2. *Hisi mother examined every patienti .

3. *Hei examined every patienti .

4. *A friend of hisi examined every patienti .

How is crossover normally enforced? There are a number of approaches, but one

way or another, they prevent a quantifier from binding a pronoun by moving over it.

However, this is problematic. Other examples suggest that the right account of

crossover is not in terms of hierarchy but rather in terms of linear order.

5. [Someone from every cityi] likes iti .

28

Explaining crossover: trying surface scope

Let’s try and construct a surface-scope derivation for hei examined every patienti .

e→ t t

e

t t

e→ e→ t

t e→ t

e

 -→

e→ t e→ t

t

There is no way to conclude the derivation. Barker & Shan (2008) put it well:

At best, the pronoun mournfully looks left for an antecedent, while the

binder looks right for a pronoun to bind.

29

Explaining crossover: trying inverse scope

t t

e→ t t

e

t t

t t

e→ e→ t

t e→ t

t t

e

-→

t e→ t

e→ t t

t

-→
t e→ t

e→ t

Can we conclude this derivation? If we stick to our old version of ↓, we could since

the bottom and top-right types match. But we can place a restriction on ↓:

a t

t
-→ a

In other words, you’re only allowed to “end” derivations of sentences.

30

Explaining crossover: trying inverse scope

t t

e→ t t

e

t t

t t

e→ e→ t

t e→ t

t t

e

-→

t e→ t

e→ t t

t

-→
t e→ t

e→ t

Can we conclude this derivation? If we stick to our old version of ↓, we could since

the bottom and top-right types match. But we can place a restriction on ↓:

a t

t
-→ a

In other words, you’re only allowed to “end” derivations of sentences.

30

Stepping back

The prohibition on crossover comes from two places: the inherent L-R bias in

composition, and a stipulation to the effect that only complete sentences can be ↓’d.

Taken together, these require a bound pronoun to follow its binder. There seem to

be some counterexamples:

6. Himselfi , every mani loves _.

7. Which of hisi relatives does every mani love _ the most?

8. Unless hei ’s been an officer, no mani can be a gentleman _.

Moral: the right notion is reconstructed linear order. Shan & Barker (2006), Barker &

Shan (2014) give a full fragment treating reconstruction.

31

Islands

There is a slight hiccup. If pronouns take scope, and things need to be lowered at

islands, how can pronouns scope out of islands?

9. Every philosopheri thinks [theyi ’re a genius].

For the [tensed clause] (a scope island), we derive λx.geniusx. We need to convert

this back to a tower so it can interact with the .-shifted subject in the desired way.

Moreover, whatever solution we give should be general enough to handle cases like:

10. Every boyi told every girlj that [hei was paired with herj].

By and large, these issues have not been dealt with by continuations-istas. There is

one exception (Charlow 2014).

32

Barker, Chris & Chung-chieh Shan. 2008. Donkey anaphora is in-scope binding. Semantics and Pragmatics 1(1).

1–46. https://doi.org/10.3765/sp.1.1.

Barker, Chris & Chung-chieh Shan. 2014. Continuations and natural language. Oxford: Oxford University Press.

https://doi.org/10.1093/acprof:oso/9780199575015.001.0001.

Charlow, Simon. 2014. On the semantics of exceptional scope. New York University Ph.D. thesis.

http://semanticsarchive.net/Archive/2JmMWRjY/.

Charlow, Simon. 2017. A modular theory of pronouns and binding. In Proceedings of Logic and Engineering of

Natural Language Semantics 14.

Jacobson, Pauline. 1999. Towards a variable-free semantics. Linguistics and Philosophy 22(2). 117–184.

https://doi.org/10.1023/A:1005464228727.

Kiselyov, Oleg. 2015. Applicative abstract categorial grammars. In Makoto Kanazawa, Lawrence S. Moss &

Valeria de Paiva (eds.), NLCS’15. Third workshop on natural language and computer science, vol. 32 (EPiC

Series), 29–38.

McBride, Conor & Ross Paterson. 2008. Applicative programming with effects. Journal of Functional

Programming 18(1). 1–13. https://doi.org/10.1017/S0956796807006326.

Shan, Chung-chieh & Chris Barker. 2006. Explaining crossover and superiority as left-to-right evaluation.

Linguistics and Philosophy 29(1). 91–134. https://doi.org/10.1007/s10988-005-6580-7.

33

https://doi.org/10.3765/sp.1.1
https://doi.org/10.1093/acprof:oso/9780199575015.001.0001
http://semanticsarchive.net/Archive/2JmMWRjY/
https://doi.org/10.1023/A:1005464228727
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1007/s10988-005-6580-7

	Towers
	Binding
	References

