Modularity in semantics: pronouns

Semantics Il

April 19, 2018

Modularity

A baseline extensional semantic theory

Inductively define the space of possible meanings, sorted by type:
Ti=elt|T-T
——
e—t, (e—=t)—t,..
Interpret binary combination via functional application:

[x Bl =[][R]

Assignment-dependence

Natural languages have free and bound pro-forms.

1. John saw her.

2. Everybody; did their; homework.
Standardly: meanings depend on assignments (ways of valuing free variables).

og.=elt|lo—-0C T.=Go!=g—~0O

Interpret binary combination via assignment-sensitive functional application.

[Bl :=Ag.[a] g([B] 9)
— =~

G(b—c) Gb
—_—
Ge

Sample derivation: John saw her,

Gt
Ag.saw goj
Ge G(e —t)
Ag.j Ag.saw go
Gle—e—-1t) Ge
Ag.saw Ag. 9o

(Apply the result to a contextually furnished assignment to get a proposition.)

Pulling out what matters

Key features of the standard approach to assignment-dependence:

> Uniformity: everything depends on an assignment (many things trivially).

> Enriched composition: [-] stitches assignment-relative meanings together.

Here’s another possibility: abstract out these key pieces, apply them on demand.

pX:=Ag.X meon.=Ag.mg(ng)
¢/ Y
cf. [John] := Ag.j cf. [B] :=Ag.[x]lg([B]g)

Sample derivation: shey spoke

Gt
Ag.spoke go
/\
Ce Ge - Gt
Ag. do An.Ag.spoke (ng)

|
Gle—1)
Ag.spoke

K

e—t

spoke

Applicatives

G’s p and ® make it an applicative functor (McBride & Paterson 2008, Kiselyov
2015). A type constructor F is applicative if it supports p and ® with these types...

p:a—Fa ®.F(a—b)—Fa—Fb

...Where p is a trivial way to inject something into the richer type characterized by

F, and ® is function application lifted into F.!

'To ensure that p and ® behave as advertised, they’ll need to satisfy some laws. These needn’t detain
us, but see McBride & Paterson 2008, Charlow 2017.

Applicative alternatives

The technique is pretty general. Alternatives follow a similar pattern:2

o.=elt|o—-0O

Then S’s p and ® operations are defined as follows:

x = {x} mon:={fx|femxen}
N g
cf. [John] := [j] of. [« Bl i= {fx | f € [od], x € [B]}

2As do continuized grammars (Shan & Barker 2006, Barker & Shan 2014)!

Sample derivations: a linguist spoke/shey spoke

St

{spokex | x € ling}

/\

Se Se— St
{x| x€ling} An.{spokex | x € n}
|
S(e—1t)
{spoke}
E
e—t

spoke

(The applicative abstraction seems like a solid one: it captures a recurrent design pattern.)

Gt
Ag.spoke go
Ge Ge - Gt
Ad- 9o An.Ag.spoke (ng)
E
Gle—1t)
Ag.spoke
o
e—t
spoke

Composed applicatives

Whenever F and G are applicative, FG (really, F o G) is too:

F(Ga)
‘DF
Ga

‘Pc

F(Gb)
/\
F(Ga) — F(Gb) F(Ga)
o
F(Ga— Gb)
/\
F(G(a— b)) F(G(a—b))—F(Ga—Gb)
o
F(G(a—b) — Ga— Gb)
‘PF
®c
G(a—b)—Ga—-Gb

Composed applicatives: examples

There’s 2 ways to compose assignment-dependence and alternatives. First, for GS:

px:=Ag.{x} men:=Ag.{fx|femgxe ng}

This corresponds to standard alternative semantics. And here, for SG:

px = {Ag.x} men:=ANg.{fg(xg) | f € mxen}

This layering is less common, but appears in e.g. Romero & Novel (2013).

Variable-free semantics

Pronouns as identity maps

Jacobson (1999) proposes we stop thinking of pronouns as assignment-relative and

index-oriented. Instead, she suggests we model pronouns as identity functions:

Ea:i=e—a she ;= Ax.x
——
Ee

How should these compose with things like transitive verbs, which are looking for
an individual, not a function from individuals to individuals?

Pronouns as identity maps

Jacobson (1999) proposes we stop thinking of pronouns as assignment-relative and
index-oriented. Instead, she suggests we model pronouns as identity functions:
Ea:'=e—a she = Ax.x

——
Ee

How should these compose with things like transitive verbs, which are looking for

an individual, not a function from individuals to individuals?

Of course, this is exactly the same problem that comes up when you introduce

assignment-dependent meanings! And hence it admits the exact same solution.

Pronominal composition, with and without assignments

Ag.leftgg Ax.leftx
Gt Et
Ag.go An.Ag.left(ng) Ax.x An.Ax.left(nx)
Ge Ge -Gt Ee Ee—-Et
sheg ‘ ® she ‘ ®
Ag.left Ax.left
G(e—1t) E(e—1t)
E E
left left
e—t e—t
left left

In an important sense, then, the compositional apparatus underwriting variable-free

composition is equivalent to that underwriting assignment-friendly composition!

Heim & Kratzer (1998: 92): [t] = Ax.x

(5) Preliminary definition: An assignment is an individual (that is, an element
of D (= D,)).

A trace under a given assignment denotes the individual that constitutes that
assignment; for example:

(6) The denotation of “t” under the assignment Texas is Texas.

An appropriate notation to abbreviate such statements needs to be a little more
elaborate than the simple [...] brackets we have used up to now. We will
indicate the assignment as a superscript on the brackets; for instance, (7) will
abbreviate (6):

(7) [t]™* = Texas.

The general convention for reading this notation is as follows: Read “[o]*” as
8 g

“the denotation of o under a” (where o is a tree and a is an assignment).

(7) exemplifies a special case of a general rule for the interpretation of traces,
which we can formulate as follows:

(8) If ais a trace, then, for any assignment a, [o]* = a.

Multiple pronouns

There is an important difference between using assignments and individuals as
reference-fixing devices. Assignments are data structures that can in principle value

every free pronoun you need. But an individual can only value co-valued pronouns!
3. She saw her.
So a variable-free treatment of cases like these must give something like this:

AX.Ay.sawy x
—

E(Et)

Can we derive something of this type, using our existing apparatus?

Composing E with E

You bet we can. Remember that, given two applicative functors F and G, their

composition FG is automatically applicative as well. If F and G are both E, we have:

pz=

Composing E with E

You bet we can. Remember that, given two applicative functors F and G, their

composition FG is automatically applicative as well. If F and G are both E, we have:

pz=AX.Ay.z mo n=Ax.Ay.mxy(nxy)

We are just managing two individuals (tiny assignments) rather than one!

A derivation

E(EY)
Ax.Ay.sawy x
E(Ee) E(Ee) — E(EY)
AX.Ay. x Am.Ax.Ay.sawy (mxy)
v B
Ee E(E(e—~1)
AX. X Ax.Ay.sawy
E(Ee) - E(E(e — t) E(Ee)
An.Ax.Ay.saw (nxy) AXAY.y
E |°
E(E(e—e—1)) Ee
AX.Ay.saw Ay.y
E
e—-e—t

Ssaw

Assignments, and “variables”, on demand

Witness the curry/uncurry isomorphisms:

curryf ;= Ax.Ay.f (x,y) uncurryf = A(x,y).fxy

In other words, by (iteratively) uncurrying a variable-free proposition, you end up

with a dependence on a sequence (tuple) of things. Essentially, an assignment.

uncurry (Ax.Ay.saw y x) = A(X, y).Saw y x = Ap.saw p; po

Obversely, by iteratively currying a sequence(/tuple)-dependent proposition, you

end up with a higher-order function. Essentially, a variable-free meaning.

curry (Ap.saw p; po) = curry (A(X,y).sawy x) = AX.Ay.saw y x

Variable-free semantics?

So variable-free semantics (can) have the same combinatorics as the variable-full
semantics. This is no great surprise: they’re both about compositionally dealing

with “incomplete” meanings.

Moreover, under the curry/uncurry isomorphisms, a variable-free proposition is
equivalent to (something) like an assignment dependent proposition.

Let’s call the whole thing off?

Barker, Chris & Chung-chieh Shan. 2014. Continuations and natural language. Oxford: Oxford University Press.

https://doi.org/10.1093/acprof:0s0/9780199575015.001.0001.

Charlow, Simon. 2017. A modular theory of pronouns and binding. In Proceedings of Logic and Engineering of
Natural Language Semantics 14.

Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Oxford: Blackwell.

Jacobson, Pauline. 1999. Towards a variable-free semantics. Linguistics and Philosophy 22(2). 117-184.
https://doi.org/10.1023/A:1005464228727.

Kiselyov, Oleg. 2015. Applicative abstract categorial grammars. In Makoto Kanazawa, Lawrence S. Moss &
Valeria de Paiva (eds.), NLCS’15. Third workshop on natural language and computer science, vol. 32 (EPiC
Series), 29-38.

McBride, Conor & Ross Paterson. 2008. Applicative programming with effects. Journal of Functional
Programming 18(1). 1-13. https://doi.org/10.1017/50956796807006326.

Romero, Maribel & Marc Novel. 2013. Variable binding and sets of alternatives. In Anamaria Falaus (ed.),
Alternatives in Semantics, chap. 7, 174-208. London: Palgrave Macmillan UK.
https://doi.org/10.1057/9781137317247_7.

Shan, Chung-chieh & Chris Barker. 2006. Explaining crossover and superiority as left-to-right evaluation.
Linguistics and Philosophy 29(1). 91-134. https://doi.org/10.1007/s10988-005-6580-7.

https://doi.org/10.1093/acprof:oso/9780199575015.001.0001
https://doi.org/10.1023/A:1005464228727
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1057/9781137317247_7
https://doi.org/10.1007/s10988-005-6580-7

	Modularity
	Variable-free semantics
	References

