
Modularity in semantics: pronouns

Semantics II

April 19, 2018

1

Modularity

2

A baseline extensional semantic theory

Inductively define the space of possible meanings, sorted by type:

τ ::= e | t | τ → τ︸ ︷︷ ︸
e→t, (e→t)→t, ...

Interpret binary combination via functional application:

�α β� := �α��β�

3

Assignment-dependence

Natural languages have free and bound pro-forms.

1. John saw her.

2. Everybodyi did theiri homework.

Standardly: meanings depend on assignments (ways of valuing free variables).

σ ::= e | t | σ → σ τ ::= Gσ ::= g→ σ

Interpret binary combination via assignment-sensitive functional application.

�α β� := λg. �α�︸ ︷︷ ︸
G(b→c)

g(�β�︸︷︷︸
Gb

g)

︸ ︷︷ ︸
Gc

4

Sample derivation: John saw her0

Gt

λg.sawg0 j

Ge

λg. j

G(e→ t)

λg.sawg0

G(e→ e→ t)

λg.saw

Ge

λg.g0

(Apply the result to a contextually furnished assignment to get a proposition.)

5

Pulling out what matters

Key features of the standard approach to assignment-dependence:

ñ Uniformity: everything depends on an assignment (many things trivially).

ñ Enriched composition: �·� stitches assignment-relative meanings together.

Here’s another possibility: abstract out these key pieces, apply them on demand.

ρx := λg.x︸ ︷︷ ︸
cf. �John� := λg. j

mç n := λg.mg(ng)︸ ︷︷ ︸
cf. �α β� := λg.�α�g(�β�g)

6

Sample derivation: she0 spoke

Gt

λg.spokeg0

Ge

λg.g0

Ge→ Gt

λn.λg.spoke(ng)

G(e→ t)

λg.spoke

e→ t

spoke

ç

ρ

7

Applicatives

G’s ρ and ç make it an applicative functor (McBride & Paterson 2008, Kiselyov

2015). A type constructor F is applicative if it supports ρ and ç with these types. . .

ρ : a → F a ç : F (a → b)→ F a → F b

. . . Where ρ is a trivial way to inject something into the richer type characterized by

F , and ç is function application lifted into F .1

1 To ensure that ρ and ç behave as advertised, they’ll need to satisfy some laws. These needn’t detain

us, but see McBride & Paterson 2008, Charlow 2017.
8

Applicative alternatives

The technique is pretty general. Alternatives follow a similar pattern:2

σ ::= e | t | σ → σ τ ::= Sσ

Then S’s ρ and ç operations are defined as follows:

ρx :=
{
x
}︸ ︷︷ ︸

cf. �John� :=
{

j
} mç n :=

{
f x | f ∈m, x ∈ n

}︸ ︷︷ ︸
cf. �α β� :=

{
f x | f ∈ �α�, x ∈ �β�

}

2 As do continuized grammars (Shan & Barker 2006, Barker & Shan 2014)!
9

Sample derivations: a linguist spoke/she0 spoke

St{
spokex | x ∈ ling

}

Se{
x | x ∈ ling

} Se→ St

λn.{spokex | x ∈ n}

S(e→ t)

{spoke}

e→ t

spoke

ç

ρ

Gt

λg.spokeg0

Ge

λg.g0

Ge→ Gt

λn.λg.spoke(ng)

G(e→ t)

λg.spoke

e→ t

spoke

ç

ρ

(The applicative abstraction seems like a solid one: it captures a recurrent design pattern.)

10

Composed applicatives

Whenever F and G are applicative, FG (really, F ◦ G) is too:

F (G a)

G a

a

ρF

ρG

F (G b)

F (G a)→ F (G b)

F (G a → G b)

F (G (a → b)) F (G (a → b))→ F (G a → G b)

F (G (a → b)→ G a → G b)

çG

G (a → b)→ G a → G b

F (G a)

çF

çF

ρF

11

Composed applicatives: examples

There’s 2 ways to compose assignment-dependence and alternatives. First, for GS:

ρx := λg.{x} mç n := λg.
{
f x | f ∈mg, x ∈ ng

}

This corresponds to standard alternative semantics. And here, for SG:

ρx :=
{
λg.x

}
mç n := λg.

{
f g(x g) | f ∈m, x ∈ n

}

This layering is less common, but appears in e.g. Romero & Novel (2013).

12

Variable-free semantics

13

Pronouns as identity maps

Jacobson (1999) proposes we stop thinking of pronouns as assignment-relative and

index-oriented. Instead, she suggests we model pronouns as identity functions:

Ea ::= e→ a she := λx.x︸ ︷︷ ︸
Ee

How should these compose with things like transitive verbs, which are looking for

an individual, not a function from individuals to individuals?

Of course, this is exactly the same problem that comes up when you introduce

assignment-dependent meanings! And hence it admits the exact same solution.

14

Pronouns as identity maps

Jacobson (1999) proposes we stop thinking of pronouns as assignment-relative and

index-oriented. Instead, she suggests we model pronouns as identity functions:

Ea ::= e→ a she := λx.x︸ ︷︷ ︸
Ee

How should these compose with things like transitive verbs, which are looking for

an individual, not a function from individuals to individuals?

Of course, this is exactly the same problem that comes up when you introduce

assignment-dependent meanings! And hence it admits the exact same solution.

14

Pronominal composition, with and without assignments

λg. leftg0

Gt

λg.g0

Ge

she0

λn.λg. left(ng)

Ge→ Gt

λg. left

G(e→ t)

left

e→ t

left

ç

ρ

λx. leftx

Et

λx.x

Ee

she

λn.λx. left(nx)

Ee→ Et

λx. left

E(e→ t)

left

e→ t

left

ç

ρ

In an important sense, then, the compositional apparatus underwriting variable-free

composition is equivalent to that underwriting assignment-friendly composition!

15

Heim & Kratzer (1998: 92): �t� = λx.x

92 Relative Clauses, Variables, Variable Binding

Let us abandon this line of approach. Here, then, is the dilemma: We would
like the trace to denote an individual so that we can interpret the nodes above
it, but we can't seem to find a suitable individual. There is no easy way out
within the confines of our current theoretical apparatus. It is time to explore the
utility of a genuinely new theoretical construct, the variable.

5.2.2 Variables

Variables were invented precisely to be like ordinary referring phrases in the
respects we want them to be, but sufficiently unlike them to avoid the puzzles
we just ran up against. A variable denotes an individual, but only relative to a
choice of an assignment of a value. What is a value assignment for a variable ?
The simplest definition for our present purposes is this :

(5) Preliminary definition: An assignment is an individual (that is, an element
of D (= De)) .

A trace under a given assignment denotes the individual that constitutes that
assignment; for example:

(6) The denotation of "t" under the assignment Texas is Texas.

An appropriate notation to abbreviate such statements needs to be a little more
elaborate than the simple [. . .] brackets we have used up to now. We will
indicate the assignment as a superscript on the brackets; for instance, (7) will
abbreviate (6) :

(7) [t]Texil. = Texas.

TIle general convention for reading this notation is as follows: Read "[a]"" as
"the denotation of a. under a " (where a. is a tree and a is an assignment) .

(7) exemplifies a special case of a general rule for the interpretation of traces,
which we can formulate as follows:

(8) If a i s a trace, then, for any assignment a , [a]" = a.

The decision to relativize the denotations of traces to assignments has reper
cussions throughout our system of rules . We must allow the denotations of larger
phrases that contain traces to be assignment-relative as well. For instance, a VP
whose object is a trace will not denote a fixed function in D<e,,» but may denote
different functions under different assigmnent functions; for instance:

16

Multiple pronouns

There is an important difference between using assignments and individuals as

reference-fixing devices. Assignments are data structures that can in principle value

every free pronoun you need. But an individual can only value co-valued pronouns!

3. She saw her.

So a variable-free treatment of cases like these must give something like this:

λx.λy .sawy x︸ ︷︷ ︸
E(Et)

Can we derive something of this type, using our existing apparatus?

17

Composing E with E

You bet we can. Remember that, given two applicative functors F and G, their

composition FG is automatically applicative as well. If F and G are both E, we have:

ρz =

λx.λy .z mç n = λx.λy .mx y (nx y)

We are just managing two individuals (tiny assignments) rather than one!

18

Composing E with E

You bet we can. Remember that, given two applicative functors F and G, their

composition FG is automatically applicative as well. If F and G are both E, we have:

ρz = λx.λy .z mç n = λx.λy .mx y (nx y)

We are just managing two individuals (tiny assignments) rather than one!

18

A derivation

E(Et)

λx.λy .sawy x

E(Ee)

λx.λy .x

Ee

λx.x

E(Ee)→ E(Et)

λm.λx.λy .sawy (mx y)

E(E(e→ t)

λx.λy .sawy

E(Ee)→ E(E(e→ t)

λn.λx.λy .saw(nx y)

E(E(e→ e→ t))

λx.λy .saw

e→ e→ t

saw

E(Ee)

λx.λy .y

Ee

λy .y

ρ ç

ç

ρ

ρ

19

Assignments, and “variables”, on demand

Witness the curry/uncurry isomorphisms:

curryf := λx.λy .f (x, y) uncurryf := λ(x, y).f x y

In other words, by (iteratively) uncurrying a variable-free proposition, you end up

with a dependence on a sequence (tuple) of things. Essentially, an assignment.

uncurry(λx.λy .sawy x) = λ(x, y).sawy x = λp.sawp1 p0

Obversely, by iteratively currying a sequence(/tuple)-dependent proposition, you

end up with a higher-order function. Essentially, a variable-free meaning.

curry(λp.sawp1 p0) = curry(λ(x, y).sawy x) = λx.λy .sawy x

20

Variable-free semantics?

So variable-free semantics (can) have the same combinatorics as the variable-full

semantics. This is no great surprise: they’re both about compositionally dealing

with “incomplete” meanings.

Moreover, under the curry/uncurry isomorphisms, a variable-free proposition is

equivalent to (something) like an assignment dependent proposition.

Let’s call the whole thing off?

21

Barker, Chris & Chung-chieh Shan. 2014. Continuations and natural language. Oxford: Oxford University Press.

https://doi.org/10.1093/acprof:oso/9780199575015.001.0001.

Charlow, Simon. 2017. A modular theory of pronouns and binding. In Proceedings of Logic and Engineering of

Natural Language Semantics 14.

Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Oxford: Blackwell.

Jacobson, Pauline. 1999. Towards a variable-free semantics. Linguistics and Philosophy 22(2). 117–184.

https://doi.org/10.1023/A:1005464228727.

Kiselyov, Oleg. 2015. Applicative abstract categorial grammars. In Makoto Kanazawa, Lawrence S. Moss &

Valeria de Paiva (eds.), NLCS’15. Third workshop on natural language and computer science, vol. 32 (EPiC

Series), 29–38.

McBride, Conor & Ross Paterson. 2008. Applicative programming with effects. Journal of Functional

Programming 18(1). 1–13. https://doi.org/10.1017/S0956796807006326.

Romero, Maribel & Marc Novel. 2013. Variable binding and sets of alternatives. In Anamaria Fălăus, (ed.),

Alternatives in Semantics, chap. 7, 174–208. London: Palgrave Macmillan UK.

https://doi.org/10.1057/9781137317247_7.

Shan, Chung-chieh & Chris Barker. 2006. Explaining crossover and superiority as left-to-right evaluation.

Linguistics and Philosophy 29(1). 91–134. https://doi.org/10.1007/s10988-005-6580-7.

22

https://doi.org/10.1093/acprof:oso/9780199575015.001.0001
https://doi.org/10.1023/A:1005464228727
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1057/9781137317247_7
https://doi.org/10.1007/s10988-005-6580-7

	Modularity
	Variable-free semantics
	References

