
PLA, compositional dynamics

Semantics II

April 9, 2018

1

Predicate Logic with Anaphora

2

File Change Semantics, or close enough (Heim 1982, 1983)

s[Rx1 . . . xn] =
{
g ∈ s | (�x1�g, . . . , �xn�g) ∈ �R�g

}
s[φ∧ψ] = s[φ][ψ]

s[¬φ] =
{
g ∈ s |

{
g
}
[φ] = �

}
s[∃i] =

{
g∪ (i, x) | g ∈ s, x ∈ D

}

3

Illustration

s

{
g∪ (1, x) | g ∈ s,manx,witpx

}

{
g∪ (1, x) | g ∈ s,manx,witpx,whistledx

}

{
g∪ (1, x)∪ (2, y) | g ∈ s,manx,witpx,whistledx,womany

}

∃1 ∧manx1 ∧witpx1

whistledx1

∃2 ∧womanx2

4

Dynamic properties of FCS

FCS is non-eliminative: processing a context does not always lead us to a state that

is a subset of that context. In particular, dynamic existential quantifiers can expand

the context to include new anaphoric possibilities.

As such, we should expect some non-trivially dynamic behavior in the system. And

we get it. FCS conjunction is non-commutative. That is, in general:

φ∧ψ ≠ ψ∧φ

So order matters. We also observe failures of idempotence:

φ ≠ φ∧φ

5

PLA syntax and semantics

The core syntax of PLA is exactly that of first-order logic:

Atom ::= Rt1 . . . tn φ ::= Atom | φ∧φ | ¬φ | ∃v : φ

PLA semantics is conservative, but existential quantifiers extend the sequence:

s[Rt1 . . . tn]g = {e ∈ s | (�t1�e,g, . . . , �tn�e,g) ∈ �R�e,g}
s[φ∧ψ]g = s[φ]g [ψ]g

s[¬φ]g = {e ∈ s | {e}[φ]g = �}
s[∃x : φ]g = {e · d︸ ︷︷ ︸

extending e with the d’s that make φ true

| d ∈ D, e ∈ s[φ]g[x→d]}

6

Terms

The terms of PLA are slightly more articulated than standard FOL:

Term ::= x | y | . . .︸ ︷︷ ︸
Variables

| p0 | p1 | . . .︸ ︷︷ ︸
Pronouns

Variables and pronouns are evaluated in different ways:

�x�e,g = gx �pn�e,g = the n-th member of e

Variables are standard: their value is determined by the assignment. Pronoun

semantics is determined by the sequence constructed in interpretation.

7

Example calculation

s[∃x : manx]g = {e · d | d ∈ D, e ∈ s[manx]g[x→d]}
= {e · d | d ∈ D, e ∈ {e′ ∈ s | �x�e,g[x→d] ∈ �man�e,g[x→d]}}
= {e · d | d ∈ D, e ∈ {e′ ∈ s |mand}}
= {e · d | d ∈ D, e ∈ s,mand}

8

Suppose our domain has 3 individuals, D = {a,b, c}, and that a and c are linguists,

and only a is French. Then we may observe the following succession of updates:

{�}

{a, c}

{a}

{aa, ac}

{ac}

{acb}
...

∃x : lingx

frenchp0

∃x : lingx

¬frenchp1

∃x : ¬lingx

9

Info states in PLA

PLA info-states carry information about which individuals have been made salient in

a discourse. More to the point, they carry those individuals, in the order they were

introduced. Uncertainty about a referent corresponds to variation across a column:


abcde,

bbcee,

aacbe


Information growth happens in two ways: (1) you eliminate possibilities, i.e. reduce

uncertainty, or (2) you learn about some new discourse referents.

e à e′ iff ∃e′′ : e′ = e · e′′ s à s′ iff∀e′ ∈ s′ : ∃s ∈ s : e à e′

10

Variable-free dynamics

PLA is motivated mostly by a desire for a dynamic semantics that conservatively

extends static first-order logic with apparatus for pronouns.

But it gives us the resources to dispense with assignments and variables entirely:

Atom ::= Rt1 . . . tn φ ::= Atom | φ∧φ | ¬φ | ∃

The semantics is purely about generating and propagating verifying sequences:

s[Rt1 . . . tn] = {e ∈ s | (�t1�e, . . . , �tn�e) ∈ �R�e}
s[φ∧ψ] = s[φ][ψ]

s[¬φ] = {e ∈ s | {e}[φ] = �}
s[∃] = {e · d | e ∈ s,d ∈ D}

11

Illustration

{�}

{a,b, c}

{a, c}

{aa,ab,ac, ca, cb, cc}

∃

frenchp0

∃

12

Compositional dynamics

13

From updates to relations

Our dynamic meanings for our formal language were update functions on contexts,

with contexts rendered as sets of “anaphoric possibilities”. E.g., for FCS:

T ::=
{
g
}
→
{
g
}︸ ︷︷ ︸

dynamic propositions are update functions

Given that these update functions are always distributive (they process the input set

point-wise), we can just as well think of them as relations:

T ::= g→
{
g
}︸ ︷︷ ︸

dynamic propositions are update relations

Comparing the two perspectives, we see there’s no real difference:

s[∃i] =
{
g∪ (i, x) | g ∈ s, x ∈ D

}
g[∃i] =

{
g∪ (i, x) | x ∈ D

}

14

The basic idea1

g Pollyn left gn→p g a linguistn left

gn→e

gn→d

gn→c

gn→b

gn→a

ñ Dref introduction is assignment modification.

ñ Indefinites introduce drefs non-deterministically.

ñ New drefs may (not) pan out downstream (cf. Stalnaker 1978).

1 Heim (1982), Barwise (1987), Rooth (1987), Groenendijk & Stokhof (1991), Muskens (1996), etc.
15

Relation composition

When sentence meanings are update functions, successive update (i.e., conjunction)

can be modeled via function composition:

[φ∧ψ] = λs.[ψ]([φ]s)

= [ψ] ◦ [φ]
= [φ] ; [ψ]

If sentence meanings are update relations, this needs to be adjusted: [ψ]([φ]s)

isn’t well-typed, since [φ]s is a set, but [ψ] expects a single thing as input.

Can you figure out how to compose relations instead of functions?

R ◦ L = λg.
⋃

h∈Lg Rh

16

Relation composition

When sentence meanings are update functions, successive update (i.e., conjunction)

can be modeled via function composition:

[φ∧ψ] = λs.[ψ]([φ]s)

= [ψ] ◦ [φ]
= [φ] ; [ψ]

If sentence meanings are update relations, this needs to be adjusted: [ψ]([φ]s)

isn’t well-typed, since [φ]s is a set, but [ψ] expects a single thing as input.

Can you figure out how to compose relations instead of functions?

R ◦ L = λg.
⋃

h∈Lg Rh

16

Dynamic sentence meanings

Equivalently, we can think of relations as sets of ordered pairs:

a → {a} ' a → a → t ' {a× a}

Our standard semantic values (ignoring intensionality) can be conceived of as sets

of verifying assignment functions, type
{
g
}

(recall �·�¢ from intensional semantics):

�she3 whistled�¢ =
{
g | g3 ∈ whistled

}
Going dynamic means thinking of sentence meanings as relations on assignment

functions, i.e., as sets of pairs of assignments.

Static propositions:
{
g︸︷︷︸

input

}
Dynamic propositions:

{
g︸︷︷︸

input

× g︸︷︷︸
output

}

So sentences aren’t just sensitive to the assignment — they can also change it.

17

Dynamic semantics in two steps

Sentences denote updates, i.e., relations on assignments:

T ::= g→
{
g
}

�left� := λx.λg.
{
g | x ∈ left

}︸ ︷︷ ︸
e→T

Precisely the same thing goes for a transitive verb:

�likes� := λx.λy .λg.
{
g | likesx y

}︸ ︷︷ ︸
e→e→T

Practice: what meaning is assigned by this theory to Polly likes Chris?

�Polly [likes Chris]� = �likes Chris��Polly� FA

= �likes��Chris��Polly� FA

= (λx.λy .λg.
{
g | likesx y

}
)cp Lex× 3

= λg.
{
g | likescp

}
β× 2

If Polly likes Chris, the input g is returned. If she doesn’t, nothing is returned.

18

Dynamic semantics in two steps

Sentences denote updates, i.e., relations on assignments:

T ::= g→
{
g
}

�left� := λx.λg.
{
g | x ∈ left

}︸ ︷︷ ︸
e→T

Precisely the same thing goes for a transitive verb:

�likes� := λx.λy .λg.
{
g | likesx y

}︸ ︷︷ ︸
e→e→T

Practice: what meaning is assigned by this theory to Polly likes Chris?

�Polly [likes Chris]� = �likes Chris��Polly� FA

= �likes��Chris��Polly� FA

= (λx.λy .λg.
{
g | likesx y

}
)cp Lex× 3

= λg.
{
g | likescp

}
β× 2

If Polly likes Chris, the input g is returned. If she doesn’t, nothing is returned.

18

Static vs. dynamic perspectives

In a static semantics, Polly likes Chris denotes a set of assignments. It’s either the

full set of all assignments or the empty set of none, depending on the facts.

�Polly likes Chris�¢ =
{
g | likescp

}

In a dynamic semantics, Polly likes Chris denotes a relation on assignments. It’s

either the identity relation, or the empty relation, depending on the facts.

�Polly likes Chris� = λg.
{
g | likescp

}
'
{
(g,g) | likescp

}

19

Binding

So that’s how simple sentences work. If we want a rule like Predicate Modification,

we’ll have to state one that works with dynamic propositions, but that is

straightforward to do, and we pass over it today.

Of more immediate interest is the dynamic correlate of Predicate Abstraction:

Static PA: �n α�g = λx.�α�g[n→x]

It turns out that we can make fairly direct use of this rule in a dynamic system:

Dynamic PA:

�n α� = λx.λg.�α�g[n→x]

20

Binding

So that’s how simple sentences work. If we want a rule like Predicate Modification,

we’ll have to state one that works with dynamic propositions, but that is

straightforward to do, and we pass over it today.

Of more immediate interest is the dynamic correlate of Predicate Abstraction:

Static PA: �n α�g = λx.�α�g[n→x]

It turns out that we can make fairly direct use of this rule in a dynamic system:

Dynamic PA: �n α� = λx.λg.�α�g[n→x]

20

Example: Bill t left

T

λg.
{
g[1→b] | b ∈ left

}

e

b

Bill

e →T
λx.λg.

{
g[1→x] | x ∈ left

}

1 T

λg.
{
g | g1 ∈ left

}
← we haven’t seen how this works yet

t1 left

It isn’t exaggerating to say that this is the key feature of dynamic semantics: when

the assignment function shifts, perhaps even via a run-of-the-mill Predicate

Abstraction, the shifted assignments are remembered above the point of the shift.

21

Example: Bill t left

T

λg.
{
g[1→b] | b ∈ left

}

e

b

Bill

e →T
λx.λg.

{
g[1→x] | x ∈ left

}

1 T

λg.
{
g | g1 ∈ left

}
← we haven’t seen how this works yet

t1 left

It isn’t exaggerating to say that this is the key feature of dynamic semantics: when

the assignment function shifts, perhaps even via a run-of-the-mill Predicate

Abstraction, the shifted assignments are remembered above the point of the shift.

21

Example: Bill t left

T

λg.
{
g[1→b] | b ∈ left

}

e

b

Bill

e →T
λx.λg.

{
g[1→x] | x ∈ left

}

1 T

λg.
{
g | g1 ∈ left

}
← we haven’t seen how this works yet

t1 left

It isn’t exaggerating to say that this is the key feature of dynamic semantics: when

the assignment function shifts, perhaps even via a run-of-the-mill Predicate

Abstraction, the shifted assignments are remembered above the point of the shift.

21

Example: Bill t left

T

λg.
{
g[1→b] | b ∈ left

}

e

b

Bill

e →T
λx.λg.

{
g[1→x] | x ∈ left

}

1 T

λg.
{
g | g1 ∈ left

}
← we haven’t seen how this works yet

t1 left

It isn’t exaggerating to say that this is the key feature of dynamic semantics: when

the assignment function shifts, perhaps even via a run-of-the-mill Predicate

Abstraction, the shifted assignments are remembered above the point of the shift.

21

Traces and pronouns

What kind of dynamic-semantics should we give to traces and pronouns? Solve for ?:

?︸︷︷︸
�t1�

+ λx.λg.
{
g | x ∈ left

}︸ ︷︷ ︸
�left�

= λg.
{
g | g1 ∈ left

}

Actually, this fully determines �t1�. What should it be?

�t1� = λf .λg.f g1 g︸ ︷︷ ︸
(e→T)→T

This in turn implies something a little strange about the semantics of transitive

verbs. They cannot be type e→ e→ T. Why not? Imagine you had a trace in object

position. It wouldn’t be able to combine with the verb!

�likes� = λQ.λy .Q (λx.oldLikesx y)︸ ︷︷ ︸
((e→T)→T)→e→T

22

Traces and pronouns

What kind of dynamic-semantics should we give to traces and pronouns? Solve for ?:

?︸︷︷︸
�t1�

+ λx.λg.
{
g | x ∈ left

}︸ ︷︷ ︸
�left�

= λg.
{
g | g1 ∈ left

}

Actually, this fully determines �t1�. What should it be?

�t1� = λf .λg.f g1 g︸ ︷︷ ︸
(e→T)→T

This in turn implies something a little strange about the semantics of transitive

verbs. They cannot be type e→ e→ T. Why not?

Imagine you had a trace in object

position. It wouldn’t be able to combine with the verb!

�likes� = λQ.λy .Q (λx.oldLikesx y)︸ ︷︷ ︸
((e→T)→T)→e→T

22

Traces and pronouns

What kind of dynamic-semantics should we give to traces and pronouns? Solve for ?:

?︸︷︷︸
�t1�

+ λx.λg.
{
g | x ∈ left

}︸ ︷︷ ︸
�left�

= λg.
{
g | g1 ∈ left

}

Actually, this fully determines �t1�. What should it be?

�t1� = λf .λg.f g1 g︸ ︷︷ ︸
(e→T)→T

This in turn implies something a little strange about the semantics of transitive

verbs. They cannot be type e→ e→ T. Why not? Imagine you had a trace in object

position. It wouldn’t be able to combine with the verb!

�likes� = λQ.λy .Q (λx.oldLikesx y)︸ ︷︷ ︸
((e→T)→T)→e→T

22

Indefinites

What kind of dynamic-semantics should we give to indefinites? Solve for ?:

?︸︷︷︸
�a linguist�

+ λx.λg.
{
g | x ∈ left

}︸ ︷︷ ︸
�left�

= λg.
{
g | ∃x ∈ ling : x ∈ left

}

Again, this fully determines �a linguist�. What should it be?

�a linguist� = λf .λg.
⋃

x∈ling f x g︸ ︷︷ ︸
(e→T)→T

Then �a linguist left� = λg.
⋃

x∈ling
{
g | x ∈ left

}
, which is either empty if no linguists

left, or which is
{
g
}

if some linguist left.

23

Indefinites

What kind of dynamic-semantics should we give to indefinites? Solve for ?:

?︸︷︷︸
�a linguist�

+ λx.λg.
{
g | x ∈ left

}︸ ︷︷ ︸
�left�

= λg.
{
g | ∃x ∈ ling : x ∈ left

}

Again, this fully determines �a linguist�. What should it be?

�a linguist� = λf .λg.
⋃

x∈ling f x g︸ ︷︷ ︸
(e→T)→T

Then �a linguist left� = λg.
⋃

x∈ling
{
g | x ∈ left

}
, which is either empty if no linguists

left, or which is
{
g
}

if some linguist left.

23

Example: a linguist t left

T

λg.
⋃

x∈ling
{
g[1→x] | x ∈ left

}

(e→ T)→ T

λf .λg.
⋃

x∈ling f x g

a linguist

e →T
λx.λg.

{
g[1→x] | x ∈ left

}

1 T

λg.
{
g | g1 ∈ left

}

t1 left

24

Example: a linguist t left

T

λg.
⋃

x∈ling
{
g[1→x] | x ∈ left

}

(e→ T)→ T

λf .λg.
⋃

x∈ling f x g

a linguist

e →T
λx.λg.

{
g[1→x] | x ∈ left

}

1 T

λg.
{
g | g1 ∈ left

}

t1 left

24

Example: a linguist t left

T

λg.
⋃

x∈ling
{
g[1→x] | x ∈ left

}

(e→ T)→ T

λf .λg.
⋃

x∈ling f x g

a linguist

e →T
λx.λg.

{
g[1→x] | x ∈ left

}

1 T

λg.
{
g | g1 ∈ left

}

t1 left

24

Example: a linguist t left

T

λg.
⋃

x∈ling
{
g[1→x] | x ∈ left

}

(e→ T)→ T

λf .λg.
⋃

x∈ling f x g

a linguist

e →T
λx.λg.

{
g[1→x] | x ∈ left

}

1 T

λg.
{
g | g1 ∈ left

}

t1 left

24

Input-output

g Pollyn left gn→p g a linguistn left

gn→e

gn→d

gn→c

gn→b

gn→a

Binding info, stored, can be passed:

�and� = λr.λl.λg.
⋃

h∈lg r h︸ ︷︷ ︸
T→T→T

25

Going ‘variable-free’

Exercise: restate compositional dynamics, using PLA! I’ll get you started. Again,

we’ll keep the system relational, which is no loss since PLA, like FCS, is distributive:

T ::= s→ {s}︸ ︷︷ ︸
s is the type of sequences of entities

Then meanings for verbs can be stated in a way parallel to our previous system:

�left� = λx.λe.{e | x ∈ left}︸ ︷︷ ︸
e→T

And predicate abstraction works by extending the input sequence:

�↑ α� = λx.λe.�α�(e · x)︸ ︷︷ ︸
e→T

26

Barwise, Jon. 1987. Noun phrases, generalized quantifiers, and anaphora. In Peter Gärdenfors (ed.), Generalized

Quantifiers, 1–29. Dordrecht: Reidel. https://doi.org/10.1007/978-94-009-3381-1_1.

Groenendijk, Jeroen & Martin Stokhof. 1991. Dynamic predicate logic. Linguistics and Philosophy 14(1). 39–100.

https://doi.org/10.1007/BF00628304.

Heim, Irene. 1982. The semantics of definite and indefinite noun phrases. University of Massachusetts, Amherst

Ph.D. thesis. http://semanticsarchive.net/Archive/Tk0ZmYyY/.

Heim, Irene. 1983. File change semantics and the familiarity theory of definiteness. In Rainer Bäuerle,

Christoph Schwarze & Arnim von Stechow (eds.), Meaning, use and interpretation of language, 164–190.

Berlin: Walter de Gruyter. https://doi.org/10.1515/9783110852820.164.

Muskens, Reinhard. 1996. Combining Montague semantics and discourse representation. Linguistics and

Philosophy 19(2). 143–186. https://doi.org/10.1007/BF00635836.

Rooth, Mats. 1987. Noun phrase interpretation in Montague grammar, File Change Semantics, and situation

semantics. In Peter Gärdenfors (ed.), Generalized Quantifiers, 237–269. Dordrecht: Reidel.

https://doi.org/10.1007/978-94-009-3381-1_9.

Stalnaker, Robert. 1978. Assertion. In Peter Cole (ed.), Pragmatics, vol. 9 (Syntax and Semantics), 315–332. New

York: Academic Press.

27

https://doi.org/10.1007/978-94-009-3381-1_1
https://doi.org/10.1007/BF00628304
http://semanticsarchive.net/Archive/Tk0ZmYyY/
https://doi.org/10.1515/9783110852820.164
https://doi.org/10.1007/BF00635836
https://doi.org/10.1007/978-94-009-3381-1_9

	Predicate Logic with Anaphora
	Compositional dynamics
	References

