
Interpreting movement

Semantics II

January 22 & 25, 2018

1

Semantics without assignments

�A� = f : σ → τ �B� = x : σ
FA

�A B� = f x : τ
�A� = x : σ �B� = f : σ → τ

BA
�A B� = f x : τ

�A� = f : σ → t �B� = g : σ → t
PM

�A B� = λx.f x ∧ gx : σ → t

2

Conventions I

The semantic value of a tree T is written �T �.

Our basic types are e and t. Complex types are defined inductively:

If σ and τ are both types, then σ → τ is a type.

‘σ → τ’ names the space of functions f s.t. Domf ⊆ σ and Ranf ⊆ τ.

3

Conventions II

We drop parentheses whenever possible:

ñ Types associate to the right: ρ → σ → τ ≡ ρ → (σ → τ).

ñ Function application associates to the left: f x y ≡ (f x)y.

ñ The scope of a λ extends as far to the right as possible: f (λx.f x y z)x.

4

A sample derivation: John saw the big dog

j : e
saw : e→ e→ t

the : (e→ t)→ e

big : e→ t dog : e→ t

λx.bigx ∧ dogx : e→ t

the(λx.bigx ∧ dogx) : e
saw(the(λx.bigx ∧ dogx)) : e→ t

saw(the(λx.bigx ∧ dogx)) j : t

(Leaving the object-language stuff implicit, as well as the inference rules.)

5

Equivalence to tree representations

saw(the(λx.bigx ∧ dogx)) j : t

j : e
John

saw(the(λx.bigx ∧ dogx)) : e→ t

saw : e→ e→ t

saw

the(λx.bigx ∧ dogx) : e

the : (e→ t)→ e

the

λx.bigx ∧ dogx : e→ t

big : e→ t

big

dog : e→ t

dog

6

Equivalence to tree representations

saw(the(λx.bigx ∧ dogx)) j : t

j : e
John

saw(the(λx.bigx ∧ dogx)) : e→ t

saw : e→ e→ t

saw

the(λx.bigx ∧ dogx) : e

the : (e→ t)→ e

the

λx.bigx ∧ dogx : e→ t

big : e→ t

big

dog : e→ t

dog

6

Equivalence to tree representations

saw(the(λx.bigx ∧ dogx)) j : t

j : e
John

saw(the(λx.bigx ∧ dogx)) : e→ t

saw : e→ e→ t

saw

the(λx.bigx ∧ dogx) : e

the : (e→ t)→ e

the

λx.bigx ∧ dogx : e→ t

big : e→ t

big

dog : e→ t

dog

6

Equivalence to tree representations

saw(the(λx.bigx ∧ dogx)) j : t

j : e
John

saw(the(λx.bigx ∧ dogx)) : e→ t

saw : e→ e→ t

saw

the(λx.bigx ∧ dogx) : e

the : (e→ t)→ e

the

λx.bigx ∧ dogx : e→ t

big : e→ t

big

dog : e→ t

dog

6

Equivalence to tree representations

saw(the(λx.bigx ∧ dogx)) j : t

j : e
John

saw(the(λx.bigx ∧ dogx)) : e→ t

saw : e→ e→ t

saw

the(λx.bigx ∧ dogx) : e

the : (e→ t)→ e

the

λx.bigx ∧ dogx : e→ t

big : e→ t

big

dog : e→ t

dog

6

Pronouns and traces

7

Pronouns

Pronouns are chameleons: their values shift with the context of utterance — and

sometimes multiple times within a single sentence!

1. John saw her.

2. Every philosopheri thinks theyi ’re a genius.

8

Assignments

We need some way to interpret pronouns. The standard device is an assignment

function, essentially something whose only job is to value pronouns.

Simple assignments can be typed as functions from natural numbers (indices) to

individuals: N→ e. To save parentheses, we can write gn for gn.

9

Semantics with assignments

�A�g = f : σ → τ �B�g = x : σ
FA

�A B�g = f x : τ
�A�g = x : σ �B�g = f : σ → τ

BA
�A B�g = f x : τ

�A�g = f : σ → t �B�g = g : σ → t
PM

�A B�g = λx.f x ∧ gx : σ → t

10

Example derivation: the dog near her1

the : (e→ t)→ e

dog : e→ t

near : e→ e→ t g1 : e
nearg1 : e→ t

λx.dogx ∧ nearg1 x : e→ t

the(λx.dogx ∧ nearg1 x) : e

What, precisely, this means depends on how g tells us to understand 1.

11

Predicate Abstraction

�A�g = φ : σ
PA

�n A�g = λx.�A�g[n→x] : e→ σ

Formulated in this way, the rule looks a little strange: the denotation of A at g

doesn’t matter at all for determining the denotation of n A at g!

This is why people sometimes say that rules like PA are non-compositional. This is

not a deep feature of the system, and we will talk a bit more about this later on.

12

Practice with PA

13

Basic case

λx.paperx ∧wrotex g1 : e→ t

paper : e→ t

paper

λx.wrotex g1 : e→ t

2 wroteg2 g1 : t

g1 : e
she1

wroteg2 : e→ t

wrote : e→ e→ t

wrote

g2 : e
t2

14

Basic case

λx.paperx ∧wrotex g1 : e→ t

paper : e→ t

paper

λx.wrotex g1 : e→ t

2 wroteg2 g1 : t

g1 : e
she1

wroteg2 : e→ t

wrote : e→ e→ t

wrote

g2 : e
t2

14

Basic case

λx.paperx ∧wrotex g1 : e→ t

paper : e→ t

paper

λx.wrotex g1 : e→ t

2 wroteg2 g1 : t

g1 : e
she1

wroteg2 : e→ t

wrote : e→ e→ t

wrote

g2 : e
t2

14

Basic case

λx.paperx ∧wrotex g1 : e→ t

paper : e→ t

paper

λx.wrotex g1 : e→ t

2 wroteg2 g1 : t

g1 : e
she1

wroteg2 : e→ t

wrote : e→ e→ t

wrote

g2 : e
t2

14

Basic case

λx.paperx ∧wrotex g1 : e→ t

paper : e→ t

paper

λx.wrotex g1 : e→ t

2 wroteg2 g1 : t

g1 : e
she1

wroteg2 : e→ t

wrote : e→ e→ t

wrote

g2 : e
t2

14

Parasitic gaps?

Using {FA,BA,PM,PA} can we analyze parasitic gap constructions like the following?

3. . . . the paper Dean cited _ without reading _ . . .

(Thanks to Akane for bringing up these kinds of cases.)

For the sake of discussion, we can make the following assumptions:

ñ Reading has a silent subject DEAN, i.e., �PRO�g = d.

ñ �without�g = �not�g = λp.¬p (type: t→ t)

15

Parasitic gap analysis

λx.citex d∧¬readx d : e→ t

λx.citex d : e→ t

3 citeg3 d : t

d : e
Dean

citeg3 : e→ t

cite : e→ e→ t

cited

g3 : e
t3

λx.¬readx d : e→ t

2 ¬readg2 d : t

λp.¬p : t→ t

without

readg2 d : t

d : e
PRO

readg2 : e→ t

read : e→ e→ t

reading

g2 : e
t2

16

Parasitic gap analysis

λx.citex d∧¬readx d : e→ t

λx.citex d : e→ t

3 citeg3 d : t

d : e
Dean

citeg3 : e→ t

cite : e→ e→ t

cited

g3 : e
t3

λx.¬readx d : e→ t

2 ¬readg2 d : t

λp.¬p : t→ t

without

readg2 d : t

d : e
PRO

readg2 : e→ t

read : e→ e→ t

reading

g2 : e
t2

16

Parasitic gap analysis

λx.citex d∧¬readx d : e→ t

λx.citex d : e→ t

3 citeg3 d : t

d : e
Dean

citeg3 : e→ t

cite : e→ e→ t

cited

g3 : e
t3

λx.¬readx d : e→ t

2 ¬readg2 d : t

λp.¬p : t→ t

without

readg2 d : t

d : e
PRO

readg2 : e→ t

read : e→ e→ t

reading

g2 : e
t2

16

Parasitic gap analysis

λx.citex d∧¬readx d : e→ t

λx.citex d : e→ t

3 citeg3 d : t

d : e
Dean

citeg3 : e→ t

cite : e→ e→ t

cited

g3 : e
t3

λx.¬readx d : e→ t

2 ¬readg2 d : t

λp.¬p : t→ t

without

readg2 d : t

d : e
PRO

readg2 : e→ t

read : e→ e→ t

reading

g2 : e
t2

16

Parasitic gap analysis

λx.citex d∧¬readx d : e→ t

λx.citex d : e→ t

3 citeg3 d : t

d : e
Dean

citeg3 : e→ t

cite : e→ e→ t

cited

g3 : e
t3

λx.¬readx d : e→ t

2 ¬readg2 d : t

λp.¬p : t→ t

without

readg2 d : t

d : e
PRO

readg2 : e→ t

read : e→ e→ t

reading

g2 : e
t2

16

Parasitic gap analysis

λx.citex d∧¬readx d : e→ t

λx.citex d : e→ t

3 citeg3 d : t

d : e
Dean

citeg3 : e→ t

cite : e→ e→ t

cited

g3 : e
t3

λx.¬readx d : e→ t

2 ¬readg2 d : t

λp.¬p : t→ t

without

readg2 d : t

d : e
PRO

readg2 : e→ t

read : e→ e→ t

reading

g2 : e
t2

16

Parasitic gap analysis

λx.citex d∧¬readx d : e→ t

λx.citex d : e→ t

3 citeg3 d : t

d : e
Dean

citeg3 : e→ t

cite : e→ e→ t

cited

g3 : e
t3

λx.¬readx d : e→ t

2 ¬readg2 d : t

λp.¬p : t→ t

without

readg2 d : t

d : e
PRO

readg2 : e→ t

read : e→ e→ t

reading

g2 : e
t2

16

Parasitic gap analysis

λx.citex d∧¬readx d : e→ t

λx.citex d : e→ t

3 citeg3 d : t

d : e
Dean

citeg3 : e→ t

cite : e→ e→ t

cited

g3 : e
t3

λx.¬readx d : e→ t

2 ¬readg2 d : t

λp.¬p : t→ t

without

readg2 d : t

d : e
PRO

readg2 : e→ t

read : e→ e→ t

reading

g2 : e
t2

16

Parasitic gap analysis

λx.citex d∧¬readx d : e→ t

λx.citex d : e→ t

3 citeg3 d : t

d : e
Dean

citeg3 : e→ t

cite : e→ e→ t

cited

g3 : e
t3

λx.¬readx d : e→ t

2 ¬readg2 d : t

λp.¬p : t→ t

without

readg2 d : t

d : e
PRO

readg2 : e→ t

read : e→ e→ t

reading

g2 : e
t2

16

Note about binding operators

It is frequently assumed that the nodes triggering PA are introduced by movement.

An alternative is to suppose that PA-triggering indices are freely inserted in the

syntax (they’re silent, after all).

Still, it is worth thinking about our last tree in terms of the first kind of assumption.

What movements would introduce our two abstraction nodes?

17

Ellipsis

It’s frequently noted that ambiguity doesn’t multiply in ellipsis:

4. Mary [VP went to the bank], and John did ∆ too.

5. Mary [VP saw the elk with the binoculars], and John did ∆ too.

This suggests that ellipsis requires ∆ to mean the same thing as its “antecedent” VP.

Nevertheless, we find certain cases in which the meaning does seem to shift:

6. Mary [VP cited her paper], and John did ∆ too.

18

Quantifiers

English quantifiers occur in object positions, and participate in scope ambiguities:

7. John read every book.

8. A doctor examined every patient.

9. Everyone passenger wasn’t screened.

Given a richer theory of the syntax and the architecture of the grammar, cases like

(7) and (8) are automatically explained by our interpretive system. Cases like (9)

turn out to be a bit trickier to account for (but they are within reach as well).

19

Scope inversion

In the Y-model of syntax, a post-surface level of representation is assumed.

Crucially, at this level, quantifiers can silently participate in movement processes

similar to the processes that produce relativization structures.

D-structure

S-structure

PF LF

overt movement

covert movement

7. [every book] [1 [John read t1]]

8. [a doctor] [1 [[every patient] [2 [t1 examined t2]]]]

[every patient] [2 [[a doctor] [1 [t1 examined t2]]]]

20

Crossover and reconstruction

10. *Theiri advisor cited no grad studenti .

11. *Shei cited every linguisti .

12. *Their advisori seems to every Ph.D. studenti to be a genius.

What distinguishes the grammatical cases from the ungrammatical ones? What does

this suggest about possible constraints on quantifier movement?

21

Roofing and inverse linking

Despite the fact that both of the following sentences contain two quantifiers, they

turn out to be unambiguous. What is going on?

13. A candidate submitted every paper she had written.

14. A member of every committee voted to abolish it.

22

	Pronouns and traces
	Practice with PA

